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Abstract. Weak-coupling conserving approximations can be constructed by truncations of the Luttinger-
Ward functional and are well known as thermodynamically consistent approaches which respect macro-
scopic conservation laws as well as certain sum rules at zero temperature. These properties can also be
shown for variational approximations that are generated within the framework of the self-energy-functional
theory without a truncation of the diagram series. Luttinger’s sum rule represents an exception. We ana-
lyze the conditions under which the sum rule holds within a non-perturbative conserving approximation.
Numerical examples are given for a simple but non-trivial dynamical two-site approximation. The validity
of the sum rule for finite Hubbard clusters and the consequences for cluster extensions of the dynamical

mean-field theory are discussed.

PACS. 71.10.-w Theories and models of many-electron systems — 71.10.Fd Lattice fermion models

1 Introduction

Continuous symmetries of a Hamiltonian imply the ex-
istence of conserved quantities: the conservation of total
energy, momentum, angular momentum, spin and parti-
cle number is enforced by a not explicitly time-dependent
Hamiltonian which is spatially homogeneous and isotropic
and invariant under global SU(2) and U(1) gauge trans-
formations. For the treatment of a macroscopically large
quantum system of interacting fermions, approximations
are inevitable in general. Approximations, however, may
artificially break symmetries and thus lead to unphysical
violations of conservations laws.

Baym and Kadanoff [1,2] have analyzed under which
circumstances an approximation for time-dependent cor-
relation functions, and for one- and two-particle Green’s
functions in particular, respect the mentioned macroscopic
conservation laws. They were able to give corresponding
rules for a proper construction of approximations, namely
criteria for selecting suitable classes of diagrams, within
diagrammatic weak-coupling perturbation theory. Weak-
coupling approximations following these rules and thus
respecting conservation laws are called “conserving”. Fre-
quently cited examples for conserving approximations are
the Hartree-Fock or the fluctuation-exchange approxima-
tion [1,3,4].

Baym [2] has condensed the method of constructing
conserving approximations into a compact form: a con-
serving approximation for the one-particle Green’s func-
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tion G is obtained by using Dyson’s equation G =
1/(Gy! — X) with (the free, U = 0, Green’s function Gy
and) a self-energy 3 = Xyy[G] given by a universal func-
tional. Apart from G, the universal functional Xy must
depend on the interaction parameters U only. Further-
more, the functional must satisfy a vanishing-curl condi-
tion or, alternatively, must be derivable from some (uni-
versal) functional Py [G] as TXy[G] = 6Py [G]/IG (the
temperature T is introduced for convenience). In short,
“@-derivable” approximations are conserving.

P-derivable approximations have been shown [2] to ex-
hibit several further advantageous properties in addition.
One of these concerns the question of thermodynamical
consistency. There are different ways to determine the
grand potential of the system from the Green’s function
which do not necessarily yield the same result when us-
ing approximate quantities. On the one hand, {2 may be
calculated by integration of expectation values, accessible
by G, with respect to certain model parameters. For ex-
ample, {2 may be calculated by integration of the average
particle number, as obtained from the trace of G, with
respect to the chemical potential p. On the other hand, (2
can be obtained as 2 = ¢+ Trln G — Tr(¥'G) without in-
tegration. A &-derivable approximation consistently gives
the same result for {2 in both ways.

At zero temperature T' = 0 there is another non-trivial
theorem which is satisfied by any @-derivable approxima-
tion, namely Luttinger’s sum rule [5,6]. This states that
the volume in reciprocal space that is enclosed by the
Fermi surface is equal to the average particle number. The
original proof of the sum rule by Luttinger and Ward [5]
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Fig. 1. Diagrammatic representation of the Luttinger-Ward
functional @y [G]. Double lines stand for the interacting one-
particle Green’s function G, dashed lines represent the ver-
tices U.

is based on the existence of @ in the exact theory and is
straightforwardly transferred to the case of a ®-derivable
approximation. This also implies that other Fermi-liquid
properties, such as the linear trend of the specific heat at
low T and Fermi-liquid expressions for the 7' = 0 charge
and the spin susceptibility are respected by a ®-derivable
approximation.

There is a perturbation expansion [5,7] which gives the
Luttinger-Ward functional @¢;[G] in terms of closed skele-
ton diagrams (see Fig. 1). As a manageable @-derivable ap-
proximation must specify a (universal) functional @y;[G]
that can be evaluated in practice, one usually consid-
ers truncations of the expansion and sums up a certain
subclass of skeleton diagrams only. This, however, means
that the construction of conserving approximations is re-
stricted to the weak-coupling limit.

One purpose of the present paper is to show that it is
possible to construct @-derivable approximations for lat-
tice models of correlated fermions with local interactions
which are non-perturbative, i.e. do not employ truncations
of the skeleton-diagram expansion. The idea is to employ
the self-energy-functional theory (SFT) [8-10]. The SFT
constructs the Luttinger-Ward functional ¢¢[G], or its
Legendre transform Fy[X], in an indirect way, namely
by making contact with an exactly solvable reference sys-
tem. Thereby, the exact functional dependence of Fyy[X]
becomes available on a certain subspace of self-energies
which is spanned by the self-energies generated by the
reference system.

The obvious question is whether those non-
perturbative @-derivable approximations have the
same properties as the weak-coupling ¢-derivable approx-
imations suggested by Baym and Kadanoff. This requires
the discussion of the following points:

(i) Macroscopic conservation laws. For fermionic lat-
tice models, conservation of energy, particle number and
spin have to be considered. Besides the static thermody-
namics, the SF'T concept concentrates on the one-particle
excitations. For the approximate one-particle Green’s
function, however, it is actually simple to prove that the
above conservation laws are respected. A short discussion
is given in Appendix A.

(ii) Thermodynamical consistency. This issue has al-
ready been addressed in reference [11]. It has been shown
that the p derivative of the (approximate) SFT grand
potential (including a minus sign) equals the average
particle number (N) as obtained by the trace of the
(approximate) Green’s function. The same holds for any
one-particle quantity coupling linearly via a parameter to

the Hamiltonian, e.g. for the average total spin (S) cou-
pling via a field of strength B.

(iii) Luttinger sum rule. This is the main point to be
discussed in the present paper. There are different open
questions: First, it is straightforward to prove that weak-
coupling ®-derivable approximations respect the sum rule
as one can directly take over the proof for the exact the-
ory. For approximations constructed within the SFT, a
different proof has to be given. Second, it turns out that a
non-perturbative @-derivable approximation respects the
sum rule if and only if the sum rule holds for the reference
system that is used within the SFT. As the original and
thereby the related reference system may be studied in the
strong-coupling regime, this raises the question which ref-
erence system does respect the sum rule, i.e. which approx-
imation is consistent with the sum rule. Third, it will be
particularly interesting to study reference systems which
generate dynamical impurity approximations (DIA) [8,9]
and variational cluster approximations (VCA) [10,12], as
these consist of a finite number of degrees of freedom. Does
the Luttinger sum rule hold for finite systems? Do the DIA
and the VCA respect the sum rule? What is the simplest
approximation consistent with the sum rule? Note that
finite reference systems consisting of a few sites only have
been shown [9,13-19] to generate approximations which
qualitatively capture the main physics correctly. Finally,
it is important to understand these issues in order to un-
derstand whether and how a violation of the sum rule is
possible within cluster extensions [20-23] of the dynami-
cal mean-field theory (DMFT) [24-28]. Note that the SET
comprises the DMFT and certain [29] cluster extensions
and that possible violations of the sum rule in the two-
dimensional lattice models have been reported [30-32], in-
cluding a study using the dynamical cluster approximation
(DCA) [33].

The paper is organized as follows: A brief general dis-
cussion of the Luttinger sum rule is given in the next sec-
tion, and a form of the sum rule specific to systems with
a finite number of spatial degrees of freedom is derived.
Section 3 clarifies the status of the sum rule with respect
to non-perturbative approximations generated within the
SFT framework. The results are elucidated by several nu-
merical examples obtained for the most simple but non-
trivial non-perturbative conserving approximation in Sec-
tion 4. Violations of the sum rule in finite systems and
their consequences are discussed in Section 5. Finally, Sec-
tion 6 summarizes our main conclusions.

2 Luttinger sum rule

A system of interacting electrons on a lattice is generally
described by a Hamiltonian H(¢,U) = Hy(t) + H1(U)
consisting of a one-particle part Hy(t) and an interaction
H, (U) with one-particle and interaction parameters ¢ and
U, respectively. As a prototype, let us consider the single-
band Hubbard model [34-36] on a translationally invariant
D dimensional lattice consisting of L sites with periodic
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boundary conditions. The Hamiltonian is given by:

H = ZtijC,}{UCjo- —+ % Znigni,g . (1)

1jo

Here, i = 1, ..., L refers to the sites, ¢ =T, | is the spin pro-
jection, ¢i» (¢l ) annihilates (creates) an electron in the

one-electron state |io), and n;, = cgacw. Fourier transfor-
mation diagonalizes the hopping matrix ¢ and yields the
dispersion (k). There are L allowed k points in the first
Brillouin zone.

Let G = Gy denote the one-electron Green’s func-
tion of the model H(¢,U). In case of the Hubbard model,

its elements are given by Gj;(w) = ((cw;c;a»w. In the
absence of spontaneous symmetry breaking, the Green’s
function is spin-independent and diagonal in reciprocal
space. It can be written as Gg(w) = 1/(w + pu — (k) —
Yk(w)) where p is the chemical potential and Xy (w)
the self-energy. We also introduce the notation Xy ¢y for
the self-energy, and Gty = 1/(w + p — t) for the free
(non-interacting) Green’s function which exhibits the de-
pendence on the model parameters but suppresses the
frequency dependence. Dyson’s equation then reads as
Giu =1/(Ggy — Zeuv)-
The Luttinger sum rule [5,6] states that

(N) =23 0(Gk(0) (2)
k

where N = ). n, is the particle-number operator,
(N) its (T = 0) expectation value, and @ the Heavy-
side step function. The factor 2 accounts for the two
spin directions. Since Gg(0)~! = p — e(k) — Xg(0), the
sum gives the number of k points enclosed by the inter-
acting Fermi surface which, for L. — oo, is defined via
p—e(k)—X(0) = 0. In the thermodynamic limit the sum
rule therefore equates the average particle number with
the Fermi-surface volume (apart from a factor (27)P/L).
Note that, as ©(Gg(0)) = O(1/Gg(0)), the sum rule equa-
tion (2) also includes the so-called Luttinger volume [37]
which (for L — o) is enclosed by the zeros of G (0).

The standard proof of the sum rule can be found in ref-
erence [5]. It is based on diagrammatic perturbation the-
ory to all orders which is used to construct the Luttinger-
Ward functional ¢¢7[G] as the sum of renormalized closed
skeleton diagrams (see Fig. 1). We emphasize that the
original proof straightforwardly extends also to finite sys-
tems. For L < oo the sum in equation (2) is discrete.
Actually, the proof is performed for finite L first, and
the thermodynamic limit (if desired) can be taken in the
end. The limit 7' — 0, on the other hand, is essential and
is responsible for possible violations of the sum rule (see
Sect. 5).

Below we need an alternative but equivalent formu-
lation of the sum rule. We start from the following
(Lehmann) representation for the Green’s function:

Gut) = 30 2l ®)

m

Here, w,, (k) — pu are the (real) poles and a,, (k) the (real
and positive) weights. For real frequencies w, it is then
easy to verify the identity:

O(Gr(w)) =Y Ow+p—wn(k) =Y Ow+pu—(a(k))

@)
where (,(k) — p is the n-th (real) zero of the Green’s
function, i.e. Gg(¢n (k) — p) = 0.

For temperature T = 0 we have (N) =
2>, ffoo dw(—=1/m)ImGg(w + i07) and thus (N)
2> kD m m(k)O (1 — wi,(k)). Hence, the Luttinger sum
rule reads:

23" an (k)0 (1 — wan(k))
k m

=23 (Z Op — wm (k) = > O(u - Cn(k))> :
k m n
(5)

This form of the sum rule is convenient for the discussion
of finite systems with L < oco.

3 Self-energy-functional theory and Luttinger
sum rule

Within the self-energy-functional theory (SFT) [8-10] the
grand potential (2 is considered as a functional of the self-
energy:

1
QeuX]=Trln ———

Gl ® + Fy[X]. (6)

Here, the trace Tr of a quantity A is defined as TrA =
T ,2> % 0" Ap(iwy,) where iw, = i(2n + 1)7T are
the fermionic Matsubara frequencies, and the functional
Fy[X] is the Legendre transform of the Luttinger-Ward
functional @¢;[G]. The self-energy functional (6) is sta-
tionary at the physical self-energy, d2¢ 7 [X¢ v]/0X = 0,
and, if evaluated at the physical self-energy, yields the
physical value for the grand potential: 2 y[Xiu] =
2y =—-Thntrexp(—F(H(t,U) — uN)) where g =1/T.
Comparing with the self-energy functional

Qpu[¥] = Trln 5+ FulZ] (7)

—
Gt’,O -

of a reference system with the same interaction but a mod-
ified one-particle part, i.e. with the Hamiltonian H (¢, U),

the not explicitly known but only U-dependent functional
Fy[X] can be eliminated:

1 1
QtJJ[E] = Qt’,U[E] + Trln m — Trln o E—

t,0 t',0 >
(8)
An approximation is constructed by searching for a sta-
tionary point of the self-energy functional on the subspace
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of trial self-energies spanned by varying the one-particle
parameters t':
02 v Xy vl
ot’

Inserting a trial self-energy into equation (8) yields

=0. 9)

Qt,U[Et/,U] = Qt’,U + Trln 1 —Trln Gt’,U .
Gt,o - St’,U
(10)
The decisive point is that the r.h.s. can be evaluated ex-
actly for a reference system which is exactly solvable.
Apart from the free Green’s function Gy, it involves
quantities of the reference system only.

This strategy to generate approximations has several
advantages: (i) contrary to the usual conserving approxi-
mations, the exact functional form of {2, y[X] is retained.
Any approximation is therefore non-perturbative by con-
struction. On the level of one-particle excitations, macro-
scopic conservation laws are respected as shown in Ap-
pendix A; (i) with 2¢ [ ¥y ] evaluated at the stationary
point ¢ = ¢/, an approximate but explicit expression for
a thermodynamical potential is provided. As all physical
quantities derive from this potential, the approximation
is thermodynamically consistent in itself (see Ref. [11] for
details); (iii) as different reference systems generate differ-
ent approximations, the SFT provides a unifying frame-
work that systematizes a class of “dynamic” approxima-
tions (see Refs. [38,29] for a discussion).

In the following we discuss the question whether or
not a dynamic approximation respects the Luttinger sum
rule. For this purpose consider first the Trin(---) terms
in equation (10). These can be evaluated using the an-
alytical and causal properties of the Green’s functions
as described in reference [9] (see Eq. (4) therein). Using
—T'In(1 + exp(—w/T)) — wO(—w) for T — 0 yields:

1
Trln - =
t,0 Et/,U

233 (k) — O — win (k)
-2 ZZ(Cn(k) - M)@(:u - Cn(k)) (11)
k n

Analogously, we have

TrinGyu =2) > (wh(k) — n)O(u — ), (k)
kE m

=23 (Galk) = O (1 — Gulk)) -
k n
(12)

Note that the reference system is always assumed to be
in the same macroscopic state as the original system, i.e.
it is considered at the same temperature and, more im-
portantly here, at the same chemical potential y. Further-
more, it has been used that, by construction of the approx-
imation, the self-energy and hence its poles at (,(k) — p

are the same for both, the original and the reference sys-
tem. This implies that the second terms on the r.h.s. of
equations (11) and (12), respectively, cancel each other in
equation (10). Finally, a (large but) finite system (L < o)
and a finite reference system are considered. Hence, the set
of poles of the Green’s function and of the self-energy as
well as sums over k are discrete and finite.

Taking the p derivative on both sides of equation (10)
then yields:

0 ul eyl U
’ s = — 2 O — wy(k
(el 000 555 0 ant)

23 O — wi, (k) -
E m

Here we have assumed the ground state of the reference
system to be non-degenerate with respect to the parti-
cle number. From the (zero-temperature) Lehmann rep-
resentation [39] it is then obvious that, within a sub-
space of fixed particle number, the p-dependence of the
Green’s function is the same as its w-dependence, i.e.

G(w) = G(w + p) with a p-independent function G. Via
the Dyson equation of the reference system, this property
can also be inferred for the self-energy and, via the Dyson
equation of the original system, for the (approximate)
Green’s function of the original system. Consequently, the
poles of (Ggé — Z’tf,U)_l and of G y are linearly depen-
dent on p, i.e. wy, (k) and W/, (k) in equations (11) and (12)
are independent of p.

We once more exploit the fact that the self-energy of
the original system is identified with the self-energy of
the reference system. Using equation (4) one immediately
arrives at

(N) = (N) +2)_O(Gk(0)) —2)_O(G}(0)). (14)
k k

(13)

This is the final result: The Luttinger sum rule for the
original system, equation (2), is satisfied if and only if
it is satisfied for the reference system, i.e. if (N) =
25", O(G}(0).

A few remarks are in order. For the reference system,
the status of the Luttinger sum rule is that of a gen-
eral theorem (as long as the general proof is valid); (N)’
and G7,(0) represent exact quantities. The above deriva-
tion shows that the theorem is “propagated” to the orig-
inal system irrespective of the approximation that is con-
structed within the SFT. This propagation also works in
the opposite direction. Namely, a possible violation of the
exact sum rule for the reference system would imply a vi-
olation of the sum rule, expressed in terms of approximate
quantities, for the original system.

Equation (14) holds for any choice of ¢'. Note, however,
that stationarity with respect to the variational parame-
ters ¢’ is essential for the thermodynamical consistency of
the approximation. In particular, consistency means that
the average particle number (N) = —02, y[ Xy v]/Op on
the Lh.s. can be obtained as the trace of the Green’s func-
tion. Stationarity is thus necessary to get the sum rule in
the form (5).
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There are no problems to take the thermodynamic
limit (if desired) on both sides of equation (14) (after di-
vision of both sides by the number of sites L). The k sums
turn into integrals over the unit cell of the reciprocal lat-
tice. For a D-dimensional lattice the D — 1-dimensional
manifolds of k points with G (0) = 0o or G (0) = 0 form
Fermi or Luttinger surfaces, respectively.

For the above derivation, translational symmetry has
been assumed for both, the original as well as the refer-
ence system. Nothing, however, prevents us from repeating
the derivation in case of systems with reduced (or com-
pletely absent) translational symmetries. One simply has
to re-interpret the wave vector k as an index which, com-
bined with m, refers to the elements of the diagonalized
Green’s function matrix G. The exact sum rule, equa-
tion (5), generalizes accordingly. The result (14) remains
valid (with the correct interpretation of k) for an original
system with reduced translational symmetries. It is also
valid for the case of a translationally symmetric original
Hamiltonian where, due to the choice of a reference system
with reduced translational symmetries, the symmetries of
the (approximate) Green’s function of the original system
are (artificially) reduced. A typical example is the varia-
tional cluster approximation (VCA) where the reference
system consists of isolated clusters of finite size.

4 Two-site dynamical-impurity approximation

While the Hartree-Fock approximation may be considered
as the most simple weak-coupling ¢-derivable approxima-
tion, the most simple non-perturbative ®-derivable ap-
proximation is given by the dynamical-impurity approxi-
mation (DIA). This shall be demonstrated in the follow-
ing for the single-band Hubbard model (1) as the origi-
nal system to be investigated. The DIA is generated by
a reference system consisting of a decoupled set of single-
impurity Anderson models with a finite number of sites
ns and is known [8] to recover the dynamical mean-field
theory in the limit ng — oo. As long as the Luttinger
sum rule holds for the single-impurity reference system,
the DIA must yield a one-particle Green’s function and a
self-energy respecting the sum rule.

The Hamiltonian of the reference system is H(t',U) =

Sk | Hl with

U
H] =" coc),cio + 3 > nignio
o [eg

N g
+ Z Z Ekagkgaika + Z Z Vk(ajkacw +h.ec.).

k=2 o k=2 o

(15)

For a homogeneous phase, the variational parameters
t = ({Eéz),sl(;),Vk(Z)}) can be assumed to be indepen-
dent of the site index i: g = Egz), e = E,(;), Vi = Vk(z).
For the sake of simplicity, we consider the two-site DIA
(ns = 2), i.e. a single bath site per correlated site only. In

¥ ¥—7—
| U=W=4 ]
1_ /,/ —
Y —
of
& — |
T
A . .
// SC
) 7y ! ! L
0 0.2 0.4 0.6 0.8 1
filling n

Fig. 2. Filling dependence of the variational parameters at
their respective optimized values and of the chemical potential.
Calculations for the Hubbard model with a semi-elliptical free
density of states of band width W = 4 and interaction strength
U =W =4 using the two-site DIA.

this case there are three independent variational parame-
ters only: the on-site energies of the correlated and of the
bath site, g and e. = ep—o, respectively, as well as the
hybridization strength V' = Vj,—s. As the reference system
consists of replicated identical impurity models which are
spatially decoupled, the trial self-energy is local and site-
independent, X;;(w) = 6;; X(w).

Calculations have been performed for the Hub-
bard model with a one-particle dispersion e(k) =
L7ty e BBt such that the density of one-
particle energies D(e) is semi-elliptic. For |e| < W/2,

D(e) = % S 6(e — (k) = wv8v2
k

W/2)Z—22. (16)

The free band width is set to W = 4. This serves as the
energy scale.

The computation of the SF'T grand potential is per-
formed as described in reference [9]. Stationary points of
the resulting function 2(eg,e¢, V) = Qu[Xeyc..v] are
obtained via iterated linearizations of its gradient. There
is a unique non-trivial stationary point (with V' # 0). Fig-
ure 2 shows the variational parameters at this point as
functions of the filling n. For the entire range of fillings,
the ground state of the reference system lies in the invari-
ant subspace with Nyt = (cjgci(7 + ajgaw) = 2. The
parameters as well as the chemical potential are smooth
functions of n. We have checked that the thermodynamical
consistency condition n = —L7'92/0u = ffoo p(w)dw is
satisfied within numerical accuracy. Here

p(w) = D(w+p— X(w)) (17)

is the interacting local density of states (DOS).

At half-filling the values of the optimized on-site en-
ergies are consistent with particle-hole symmetry. With
g0 — = —U/2 and e. — p = 0 the reference system is in
the Kondo regime with a well-formed local moment at the
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Fig. 3. Quasi-particle weight z as a function of the filling
within the two-site DIA (full lines) and the two-site DMFT [40]
(dashed lines). Calculations for U = W and U = 2W.

correlated site. The finite hybridization strength V' leads,
for U = W, to a finite DOS p(w = 0) > 0 and thus to
a metallic Fermi liquid as it is expected for the Hubbard
model within a (dynamical) mean-field description. Due
to the simple structure of the self-energy generated by the
two-site reference system, however, quasi-particle damp-
ing effects are missing.

Decreasing the filling from n = 1 to n = 0 drives the
reference system more and more out of the Kondo regime.
While . stays close to the chemical potential, the on-site
energy of the correlated site g9 crosses p close to quar-
ter filling and lies above p eventually. Note that ¢g = 0
within the DMFT, i.e. for ng — oo, while for finite ng
there is a clear deviation from £y = 0 which is necessary
to ensure thermodynamical consistency. For fillings very
close ton = 0, the grand potential £2; 7 [ X, c..v] becomes
almost independent of X'. This implies that it becomes in-
creasingly difficult to locate the stationary point with the
numerical algorithm used. The slight upturn of ¢ below
n = 0.01 (see Fig. 2) might be a numerical artifact.

It is instructive to compare the parameters with those
of the two-site DMFT (2S-DMFT). [40] The 2S-DMFT is
a simplified version of the DMFT where a mapping onto
the two-site single impurity Anderson model is achieved
by means of a simplified self-consistency equation. Assum-
ing g9 = 0 as in the full DMFT, there are two parameters
left (ec and V') which are fixed by considering the first
non-trivial order in the low- and in the high-frequency
expansion of the self-energy and the Green’s function in
the DMFE'T self-consistency equation. Although being well
motivated, this approximation is essentially ad hoc. One
therefore has to expect that the 25-DMFT is thermody-
namically inconsistent and exhibits a violation of Lut-
tinger’s sum rule. A comparison of the DIA for ng = 2 with
the 25-DMFT is thus ideally suited to demonstrate the
advantages gained by constructing approximations within
the variational framework of the SFT.

First of all, there are differences in fact. At half-filling
the 2S-DMFT predicts the hybridization to be somewhat
larger than the two-site DIA while the value for e, is

again fixed by particle-hole symmetry. Deviations grow
with decreasing filling. Contrary to the two-site DIA, V/
monotonously increases and is larger in the entire filling
range, €9 = 0 by construction, and e. even diverges for
n — 0 within the 2S-DMFT (see Ref. [40]). On the other
hand, the system is essentially uncorrelated in the limit
n — 0. Strong differences in the parameters, which en-
ter the self-energy only, therefore do not necessarily im-
ply strongly different physical quantities. This is demon-
strated by Figure 3 which shows the quasi-particle weight

calculated via
15 0 —1

as a function of the filling. While there are obvious differ-
ences when comparing the results from the two-site DIA
with those of the 2S-DMFT, the qualitative trend of z
is very similar in both approximations. Both approxima-
tions also compare well with the full DMFT: there is a
quadratic behavior of z(n) for n — 1 in the Fermi-liquid
phase (U = W) and a linear trend when approaching the
Mott phase (U = 2W). The critical interaction strength
for the Mott transition is found to be U, =~ 1.46W for the
two-site DIA and U, = 1.5W within the 2S-DMFT. For
details on the Mott transition see references [9,40].

In case of a local and site-independent self-energy, the
Luttinger sum rule can be written in the form [41]

(18)

p=po+ X(w=0), (19)
where g is the chemical potential of the free (U = 0)
system at the same particle density. Equation (19) im-
plies that not only the enclosed volume but also the shape
of the Fermi surface remains unchanged when switching
on the interaction. Using equation (17) this immediately
implies [41]

p(0) = D(1o) = pol0), (20)

i.e., in case of a correlated metal, the value of the inter-
acting local density of states at w = 0 is independent of U
and thus fixed to the value of the density of states of the
non-interacting system at the same filling.

The interacting and the non-interacting DOS are plot-
ted in Figure 4 for different fillings and for U = W and
U = 2W. The impurity self-energy of the two-site refer-
ence system is an analytical function of w except for two
first-order poles on the real axis. Via equation (17) this
two-pole structure implies that the DOS consists of three
peaks the form of which is essentially given by the non-
interacting DOS. At half-filling the three peaks are eas-
ily identified as the lower and the upper Hubbard band
and the quasi-particle resonance as it is characteristic for
a (dynamical) mean-field description [27]. For U = W
the resonance still has a significant weight. The weight
decreases upon approaching the critical interaction, and
the resonance has disappeared in the Mott insulator for
U = 2W. Hole doping of the Mott insulator is accom-
plished by the reappearance of the resonance at w = 0
which preempts the creation of holes in the lower Hubbard
band [42]. As can be seen in the spectrum for n = 0.99 in
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Fig. 4. Interacting local density of states p(w) (solid lines) for
different fillings as indicated. Calculations using the two-site
DIA for U = W (left) and U = 2W (right). For n = 0.25, n =
0.5 and n = 0.75 the non-interacting DOS po(w) is shown for
comparison (dashed lines). Note that p(0) = po(0). The dotted
line for U = 2W in the top panel is the DOS for n = 0.99.

the top panel (dotted line), the quasi-particle resonance
appears within the Mott-Hubbard gap. With decreasing
filling, the upper Hubbard band gradually shifts to higher
excitation energies and loses weight. This weight is trans-
fered to the low-energy part of the spectrum. For lower fill-
ings where the Kondo regime has been left, one would ac-
tually expect that the quasi-particle resonance disappears
by merging with the lower Hubbard band. This, however,
cannot be described with the simple two-pole structure
of the self-energy. One therefore should interpret the gap
around w = —1 at n = 0.25 as an artifact of the approx-
imation. Furthermore, the widths of the Hubbard bands
are considerably underestimated as damping effects are
missing completely. The filling-dependent spectral-weight
transfer across the Hubbard gap as well as the energy posi-
tions of the main peaks, however, are in overall agreement
with general expectations [34,43].

It is worth emphasizing that this simple two-site
dynamical-impurity approximation exactly fulfills the
Luttinger sum rule. In Figure 4 this can be seen by
comparing with the DOS of the non-interacting system
(dashed lines). The non-interacting DOS cuts the inter-
acting one at w = 0 which shows that equation (20) is sat-
isfied. Note that this is trivial for n = 1 as this is already
enforced by particle-hole symmetry. Off half-filling, how-
ever, the pinning of the DOS to its non-interacting value

two-site DIA > ]

2S-DMFT
-0.02- i
PR R RS R R
0 0.2 0.4 0.6 0.8 1
filling n

Fig. 5. Numerical results for the difference between the volume
enclosed by the Fermi surface Vrs and the filling n as a function
of n for U = W = 4. The Luttinger sum rule (Vps —n =
0) is exactly respected by the two-site DIA. Results for the
2S-DMFT and the Hubbard-I approximation are shown for
comparison. Dashed line: difference between the filling n and
the average occupation of the correlated (impurity) site in the
reference system at stationarity for the two-site DIA.

at w = 0 is a consequence of P-derivability and thereby a
highly non-trivial feature.

In contrast, the 25-DMFT does show a violation of
Luttinger’s sum rule which, however, must be attributed
to the ad hoc nature of the approximation. Figure 5 shows
the difference between the volume enclosed by the Fermi
surface

0
Ves = 7 52 0lu-=(k) - 2(0) =2 | deDe+ -5 (0)
k —0o0

(21)
and the filling n as a function of the filling. As can be seen,
there is an artificial violation of the sum rule for the 2S-
DMFT which is of the order of a few per cent while for the
@-derivable two-site DIA the sum rule is fully respected.
Note that, unlike the DMFT and also unlike the simpli-
fied 25-DMFT, the two-site DIA predicts a filling which
slightly differs from the average occupation of the corre-
lated impurity site in the reference system (see dashed line
in Fig. 5). For a finite number of bath sites ng this appears
to be necessary to fulfill the Luttinger sum rule. The fig-
ure also shows the result obtained within the Hubbard-I
approximation [34]. Here a very strong (artificial) viola-
tion of up to 100 % (for n close to half-filling) is obtained.
This should be considered as a strong drawback which is
typical for uncontrolled mean-field approximations.

There are more relations which, analogously to the
Luttinger sum rule, can be derived by means of per-
turbation theory to all orders [6] in the exact theory
and which are respected by weak-coupling conserving ap-
proximations. For example, the compressibility, defined as
Kk = On/0u, can be shown to be related to the interacting
DOS and the self-energy at the Fermi edge via

-~ 220 (0)) . (22)

K = 2p(0) (1 ”
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Fig. 6. Filling dependence of the compressibility x for U = W
as obtained within the 2S-DMFT via k = dn/du (solid line)
and via a general Fermi-liquid relation (Eq. (22), dashed line).
Using the two-site DIA identical results are obtained for both
cases.

Figure 6 shows that for the 2S-DMF'T it makes a difference
whether k is calculated as the p-derivative of the filling or
via equation (22). Again, this must be attributed to the
fact that the 2S-DMFT is not a &-derivable approxima-
tion. Contrary, the two-site DIA does respect the general
Fermi-liquid property (22) and thus yields the same result
in both cases (see Fig. 6).

5 Violation of Luttinger’s sum rule in finite
systems

The preceding section has demonstrated that the two-
site DIA satisfies the Luttinger sum rule. According to
equation (14), we can conclude that the Luttinger sum
rule must hold for the corresponding reference system,
i.e. for the two-site single-impurity Anderson model. Of
course, this can be verified more directly by evaluating
equation (5). In case of a finite system or a system with
reduced translational symmetries, the Green’s function is
a matrix with elements Gog(w) where « refers to the one-
particle basis states, and the Luttinger sum rule reads:

> oo —wi) =3 0(n—-wl)=> e -
k,m k,m k.n

(23)
Here the index k labels the elements of the diagonalized
Green’s function, i.e. equation (5) is generalized by re-
placing (k,o) — k. In case of an impurity model, equa-
tion (23) actually represents the Friedel sum rule [44,45].
For the two-site single-impurity Anderson model, the dif-

(k)

ferent one-particle excitation energies wy,” — u, the zeros

of the Green’s function ng) — p and the weights a%’i) are
easily determined by full diagonalization. We find that
equation (23) is satisfied in the entire parameter space
(except for V' = 0, see below).

Note that a violation of the sum rule occurs when, as
a function of a model parameter z, a zero of the Green’s
function crosses w = 0 for x = x.. At z. the number of
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Fig. 7. Phase diagram p vs. € of the single-impurity Anderson
model with ns = 4 sites. Total particle numbers are indicated
by Roman figures. Results have been obtained by full diagonal-
ization for the following model parameters. One-particle ener-
gies: 9 = 0 (correlated site), e, = ¢ + (k — 3) with k = 2,3,4
(uncorrelated bath sites). Hubbard interaction: U = 2e. Hy-
bridization strength: Vj, = 0.1 for k = 2,3,4. To lift Kramers
degeneracy in case of an odd particle number, a weak (ferro-
magnetic) field of strength b = 0.001 is coupled to the spins
at all sites. The dashed line marks the particle-hole symmetric
case. Luttinger’s sum rule is found to be satisfied in the entire
parameter space.

negative zeros counted by the second term on the r.h.s.
changes by one while the first term as well as the lLh.s.
remain constant since (unlike a pole) a zero of the Green’s
function is generically not connected with a change of the
ground state (level crossing). This implies that the sum
rule would be violated for x < x. or for x > x..

The case V' = 0 is exceptional. Within the two-site
DIA this corresponds to the Mott insulator (see Fig. 4,
topmost panel for U = 2W). For V' = 0 the reference
system consists of two decoupled sites, and the Green’s
function becomes diagonal in the site index. There is no
zero of the local Green’s function corresponding to the un-
correlated site. We can thus concentrate on the correlated
site where the local Green’s function exhibits a zero at
¢ —p = g0+ U/2. In the sector with one electron at the
correlated site (9 < 1 < €9 + U), the second term on the
r.h.s. changes by two at u = u. = 9+ U/2 because of the
two-fold degenerate ground state. In this case Luttinger’s
sum rule in the form (23) is violated for yu < p. and for
> pe. This “violation”, however, is a trivial one which
immediately disappears if the ground-state degeneracy is
lifted by applying a weak field term, for example.

Figure 7 shows a phase diagram of the single-impurity
Anderson model with ng = 4 sites as obtained by full di-
agonalization. The diagram covers the entire range of the
total particle number N = Y"_(clco)+>", ZZ;QmJ{wakg}
from N = 0 to N = 2ns = 8. A non-degenerate ground
state is enforced by applying a small but finite magnetic
field. No violation of the Luttinger sum rule is found. We
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Fig. 8. Phase diagram p vs. U of the Hubbard model with
L = 4 sites (open chain) as obtained by full diagonalization.
Nearest-neighbor hopping t = —1. A weak (ferromagnetic) field
of strength b = 0.01 is applied to lift Kramers degeneracy. The
dashed line marks the particle-hole symmetric case. Particle
numbers (Lh.s. of Eq. (23)) are indicated by Roman figures.
R.h.s. of equation (23): arabic figures. Luttinger’s sum rule is
found to be violated for sufficiently strong U. U.1, U, 2: critical
interactions.

have repeated the same calculation also for ng = 10 using
the Lanczos technique [46]. Again, the sum rule is found
to be always satisfied (We have performed calculations for
different U and bath parameters). This might have been
expected as the (ng — 00) Anderson model can generally
be classified as a (local) Fermi liquid [47].

The situation is less clear in the case of correlated lat-
tice models such as the Hubbard or the t-J model. For two
dimensions there are several numerical studies using high-
temperature expansion [30], quantum Monte-Carlo [31],
extended DMFT [32,48], and dynamical cluster approx-
imation (DCA) [33] which indicate a violation in the
strongly correlated metallic phase close to half-filling. For
studies of large clusters or studies directly working in the
thermodynamic limit, a definite conclusion on the validity
of the sum rule is difficult to obtain as finite-temperature
or artificial broadening effects etc. must be controlled nu-
merically. Contrary, full diagonalization of Hubbard clus-
ters consisting of a few sites only can provide exact results.
While their direct relevance for the thermodynamic limit
is less clear, it is important to note that reference sys-
tems with a finite number of sites or a finite number of
correlated sites provide the basis for a number of cluster
approaches within the SFT framework. Via equation (14)
their properties are transferred to the approximate treat-
ment of lattice models in the thermodynamic limit.

The validity of equation (23) has been checked for
Hubbard clusters of different size and in different geome-
tries. The p vs. U phase diagram for an L = 4-site open
Hubbard chain with nearest-neighbor hopping in Figure 8
shows a representative example. Again, a small but finite

field term is added to avoid a ground-state degeneracy.
As the chemical potential, for fixed U, is moved off the
particle-hole symmetric point u = U/2 and exceeds cer-
tain critical values (red lines), the particle number N [as
obtained from the Lh.s. of Eq. (23)] changes from N = L
down to (up to) N =0 (N = 2L). A critical p value in-
dicates a change of the ground state (level crossing) that
is accompanied by a change of the ground-state particle
number. In the one-particle Green’s function this is char-
acterized by a pole wy(,lf) — p crossing w = 0. The blue
lines indicate those chemical potentials at which a zero of

the Green’s function Q(Lk) — p crosses w = 0. Whenever this
happens the r.h.s. of equation (23) changes while the L.h.s.
is constant. Figure 8 shows that this occurs several times
in the N = L sector. At the particle-hole symmetric point
1 = U/2 the Luttinger sum rule is obeyed while it is vio-
lated in a wide region of the parameter space correspond-
ing to half-filling N = L. However, a critical interaction
strength U, turns out to be necessary. The value for U,
strongly varies for different cluster sizes and geometries
but has always been found to be positive and finite. Note
that for L = 4 the sum rule is fulfilled for any particle
number N # L. Qualitatively similar results can be found
for the L = 2-site Hubbard cluster where calculations can
be done even analytically. Again, a violation of the sum
rule is found in the half-filled sector beyond a certain crit-
ical U.

This has already been noticed by Rosch [49] and was
used in combination with a strong-coupling expansion to
argue that a violation of the sum rule generically occurs
for a Mott insulator. Stanescu et al. [50] have shown quite
generally that the sum rule is fulfilled when particle-hole
symmetry is present (the Luttinger surface is the same as
the Fermi surface of the non-interacting system) but vio-
lated in the Mott insulator away from particle-hole sym-
metry. It is interesting to note that these arguments can-
not be used to construct a violation of the sum rule within
DMFT or for a single-impurity Anderson model: For an
(almost) particle-hole symmetric case and model parame-
ters describing a Mott insulator (within DMFT), an odd
number of sites ng (with ng — o00) must be considered
and thus a magnetic field is needed to lift Kramers de-
generacy. Even an infinitesimal field, however, leads (at
zero temperature) to a finite and even large polarization
corresponding to a well-formed but unscreened local mo-
ment. This polarization is incomplete for any finite U as
the DMFT predicts a small but finite double occupancy
for a Mott insulator. Still there is a proximity to the fully
polarized band insulator which finally results in a weakly
correlated state and thus in a situation which is unlikely
to show a violation of the sum rule.

We have also considered Hubbard clusters with L =9
and L = 10 sites by using the Lanczos technique. [46]
Calculations have been performed for different Lanczos
depths [ ,.x to ensure that the results are independent of
Imax- Figure 9 displays an example for L = 9 and a highly
symmetric cluster geometry with periodic boundary con-
ditions and a well-defined reciprocal space. To lift ground-
state degeneracies resulting from spatial symmetries as
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Fig. 9. Ground-state particle number (red Roman figures,
Lh.s. of Eq. (23)) and prediction by the Luttinger sum rule
(blue Arabic figures, r.h.s. of Eq. (23)) as functions of the
chemical potential for a L = 9-site Hubbard cluster with peri-
odic boundary conditions. Arabic numbers are only given when
different from Roman ones. Calculations using the Lanczos
method and a finite but small magnetic field and finite but
small on-site potentials to lift ground-state degeneracies.

well as the Kramers degeneracy, small but finite on-site
potentials and a small magnetic-field term are included
in the cluster Hamiltonian. Figure 10 shows an example
for L = 10 sites without any spatial symmetries. Kramers
degeneracy for odd N is removed by applying a small mag-
netic field. With the figures we compare the expressions on
the left-hand and the right-hand side of equation (23). Ob-
viously, the sum rule is respected in most cases. Violations
are seen for half-filling N = L, i.e. in the “Mott-insulating
phase”, which is consistent with reference [49]. However,
the sum rule is also violated in the “metallic phase” close
to half-filling, namely for N = L — 1 (Fig. 9, L = 9) and
N =L —-1,L -2 (Fig. 10, L = 10). This nicely corre-
sponds to the generally observed trend [30-32,48,33] for
violations in the slightly doped metallic regime. We have
also verified that the sum rule is restored by lowering U.

Figures 9 and 10 demonstrate that the sum rule is
violated in the whole 1 range corresponding to N = L —1.
This is an important point as it shows that it is irrelevant
whether the 7" = 0 limit is approached by holding (N)
fixed and adjusting p = u(T) or by fixing u and let (N) =
(N)(T') be T-dependent. A violation of the sum rule is
found in both cases.

Kokalj and Prelovsek [51] have demonstrated that vi-
olations of the sum rule can also be found for the ¢-J
model on a finite number of sites. Our result provides an
explicit example showing that not only for ¢-J [51] but
also for Hubbard clusters a violation can be found when
the chemical potential is set to pu = limyp_ou(T) with
w(T) obtained for given (N) = const. Anyway, the orig-
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Fig. 10. The same as Figure 9 but for 10 sites.

inal proof [5] does not depend on this choice for p but
appears to work for any p.

The results raise the question which assumptions used
in the original proof of the theorem are violated or where
the proof breaks down. Note that the recently proposed
alternative topological proof [52] assumes a Fermi-liquid
state from the very beginning and thus cannot be applied
to a finite system. Using weak symmetry-breaking fields,
a more or less trivial breakdown due to ground-state de-
generacy has been excluded. An analysis of the ground
state of the L = 2 and L = 4 Hubbard clusters which
are accessible with exact (analytical or numerical) meth-
ods has shown that, for model parameters where the sum
rule is violated, the interacting ground state can never-
theless be adiabatically connected to the non-interacting
one. This excludes level crossing as a potential cause for
the breakdown. While we cannot make a definite state-
ment, it appears at least plausible that the violation of the
sum rule results from a non-commutativity of two limiting
processes, the infinite skeleton-diagram expansion and the
limit T — 0.

Using a functional-integral formalism, the Luttinger-
Ward functional at finite 7" can also be constructed in a
non-perturbative way, i.e. avoiding an infinite summation
of diagrams, as has been shown recently [53]. Formally,
the Luttinger sum rule can be obtained by exploiting a
gauge invariance of the Luttinger-Ward functional [(see
Ref. [53])]:

0

m@U[G(iwn)] =0.

(24)

If at all, this invariance can only be shown for 7" = 0
where iw, becomes a continuous variable. Unfortunately,
the non-perturbative construction of @y requires a T' > 0
formalism. Hence, the validity of the sum rule depends on
the question whether the limit 7' — 0 commutes with the
frequency differentiation. Necessary and sufficient condi-
tions for this assumption are not easily worked out. An
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understanding of the main reason for the possible break-
down of the sum rule in finite systems, very similar to the
case of Mott insulators, is therefore not yet available (see
also the discussion in Ref. [49]).

6 Conclusions

@-derivable approximations are conserving, thermody-
namically consistent and, for 7' = 0, formally respect cer-
tain non-trivial theorems such as the Luttinger sum rule.
As the construction of the Luttinger-Ward functional @ is
by no means trivial and may conflict with the limit 7" — 0
or different other limiting processes, however, the validity
of the sum rule may be questioned. Violations of the sum
rule can be found in fact for the case of strongly correlated
electron systems. For Mott insulators and finite systems
in particular, a breakdown is documented easily.

This implies that a general approximation for the
spectrum of one-particle excitations (of the one-particle
Green’s function) may violate the sum rule for two possi-
ble reasons, namely because (i) the sum rule is violated in
the exact theory, or (ii) the approximation generates an
artificial violation.

Within the usual weak-coupling conserving approxi-
mations, such as the fluctuation-exchange approximation,
the sum rule always holds as the formal steps in the gen-
eral proof of the sum rule can be carried over to the ap-
proximation — but with the important simplification of
a limited class of diagrams. This also implies that weak-
coupling conserving approximations, when applied beyond
the weak-coupling regime, might erroneously predict the
sum rule to hold.

The present paper has focused on mnon-perturbative
conserving approximations. Non-perturbative approxima-
tions, constructed within the framework of the self-energy-
functional theory and referring to a certain reference sys-
tem, are ¢-derivable and consequently respect certain
macroscopic conservation laws and are thermodynami-
cally consistent. Whether or not the sum rule holds within
the approximate approach, however, cannot be answered
generally. We found that Luttinger’s sum rule holds within
an (SFT) approximation if and only if it holds exactly in
the corresponding reference system.

The reference system that leads to the most simple
but non-trivial example for a non-perturbative conserving
approximation consists of a single correlated and a sin-
gle bath site. For this two-site system, we have found the
sum rule to be valid in the entire parameter space. Con-
sequently, the resulting two-site dynamical-impurity ap-
proximation (DIA) — opposed to more ad hoc approaches
like the two-site DMFT — fully respects the sum rule as
could be demonstrated in different ways. In view of the
simplicity of the approximation this is a remarkable result.
Since the sum rule dictates the low-frequency behavior of
the one-particle Green’s function, important mean-field
concepts, such as the emergence of a quasi-particle reso-
nance at the Fermi edge, are qualitatively captured cor-
rectly, even away from the particle-hole symmetric case.

This qualifies the two-site DIA for a quick but rough es-
timate of mean-field physics, including phases with spon-
taneously broken symmetries.

Full diagonalization and the Lanczos method have
been employed to show that also the single-impurity An-
derson model with a finite number of ng > 2 sites respects
the sum rule. Consequently, this property is transferred
to an ng-site DIA. For ng — oo the full dynamical mean-
field theory is recovered which is thereby recognized as the
prototypical non-perturbative conserving approximation.
Clearly, in the case of the DMFT, &-derivability is well
known [27] and obvious, for example, when constructing
the DMFT with the help of the skeleton-diagram expan-
sion.

Using as a trial self-energy the self-energy of a clus-
ter with L > 1 correlated sites, generates an approxima-
tion where short-range spatial correlations are included
up to the cluster extension. These variational cluster ap-
proximations provide a first step beyond the mean-field
concept. Again, whether or not the sum rule is respected
within the VCA depends on the reference system itself.
For the L = 2 Hubbard cluster, analytical calculations
straightforwardly show that violations of the sum rule
occur at half-filling, beyond a certain critical interaction
strength. In the thermodynamic limit, this would corre-
spond to the Mott-insulating regime. Applying the Lanc-
zos method to larger clusters, has shown, however, that a
breakdown of the Luttinger sum rule is also possible for
fillings off half-filling. For sufficiently strong U, the sum
rule is violated in the whole N = L — 1-particle sector.
This would correspond to a (strongly correlated) metallic
state in the thermodynamic limit. Whether or not a VCA
calculation is consistent with the sum rule, then depends
on the set of cluster hopping parameters ¢ which make
the self-energy functional stationary. First VCA calcula-
tions [54] for the D = 2 Hubbard model at low doping
and using clusters with up to L = 10 sites do predict a
violation in fact.

It is by no means clear a priori what happens
in a cluster approach using additional bath degrees
of freedom as variational parameters, as e.g. in the
cellular DMFT [21,22]. The usual periodization of the
self-consistent C-DMFT self-energy, however, should be
avoided when testing the sum rule as this introduces an
additional (though physically motivated) approximation.
Instead, equation (5) must be used with k re-interpreted
as an index referring to the elements of the self-consistent
diagonalized lattice Green’s function.

Employing the dynamical cluster approximation
(DCA) [20] represents an alternative which directly op-
erates in reciprocal space. From a real-space perspective,
the DCA is equivalent with the cellular DMFT but ap-
plied to a modified model H = H(t,U) — H(t,U) with
modified hopping parameters which are invariant under
superlattice translations as well as under translations on
the cluster [29,55]. In the limit L — oo the replacement
t — t becomes irrelevant. Analogous to the C-DMFT, the
sum rule then holds within the DCA if and only if it holds
for the individual cluster at self-consistently determined
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cluster parameters. Note, however, that this requires that
(besides the DCA self-energy) the modified hopping t in-
stead of the physical hopping has to be considered in the
computation of the volume enclosed by the Fermi (Lut-
tinger) surface of the lattice model. This is exactly what
is usually done in DCA calculations.

Within this context and in view of the violations found
for finite Hubbard clusters, it is possible to understand
why a non-perturbative cluster approximation, like the
VCA [54], or a cluster extension of the DMFT, like the
DCA [33], can produce results that are inconsistent with
Luttinger’s theorem.

We thank Robert Eder and Achim Rosch for valuable discus-
sions. The work is supported by the Deutsche Forschungsge-
meinschaft within the Forschergruppe FOR 538.

Appendix A: Macroscopic conservation
of energy, particle number and spin

The one-particle Green’s function as obtained within an
approximation generated by the choice of a reference sys-
tem respects the macroscopic conservation laws which re-
sult from symmetries of the system with respect to con-
tinuous transformation groups:

Energy conservation is apparently respected as by con-
struction the approximate SF'T Green’s function depends
on a single frequency only, i.e. is invariant under time
translations.

Conservation of the total particle number and spin is
respected if the approximate G transforms in the same
way as the exact Green’s function under global U(1) and
SU(2) gauge transformations. Consider a general transfor-
mation of the form

(A1)

with unitary S such that the interaction part Hy(U) of
the Hamiltonian is invariant (« refers to the states of the
one-particle basis). In a diagrammatic approach, the in-
variance of Hy(U) implies that the corresponding conser-
vation law is respected “locally” at each vertex. Hence,
for a conserving approximation in the sense of Baym and
Kadanoff, the transformation behavior of the free Green’s
function is then propagated by the diagram rules to the
full Green’s function. Consequently, the latter must trans-
form under S in the same way as the exact G, i.e.

Gap — Gap = (SGST) ;- (A.2)
Consider now the case of the SF'T. One has to show that
the approximate Green’s function G for the transformed
system with Hamiltonian H is given by G = SGST
if G is the approximate Green’s function of the model
H. Applying the transformation (A.1) to H, one finds
H = Ho(t) + Hl(U) — H = HO(Z) + Hl(U) with
t = StST. Again, S is assumed to leave the interaction
part invariant.

The Green’s function G of the transformed model is
(approximately) constructed via

(A.3)

from the free Green’s function of the transformed model
and the SFT self-energy which is the self-energy of the
reference system H’ = Hy (f;) + Hy(U) at the stationary
point Z..

For the transformed problem H, the stationary point
fls is determined from the SFT Euler equation:

1 G a(zi/p)w;aﬁ _
2 Gl_x, ~tU ot =0
£,0 v.u w;Ba

waf

(A4)
As an ansatz to solve the Euler equation we take
t = st,st (A.5)
with #] to be determined. The transformation law (A.2)
for the exact Green’s function of the reference system is
Gy vy = Gsystu = SGtII,UST. This also holds for the
free Green’s function. Using the Dyson equation of the
reference system we can deduce Xy ; = Sy 7UST. Fur-
thermore, for the free Green’s function of the transformed
original model we have GZ,O = SGwST. Using these re-

sults, we see that equation (A.4) is equivalent to

1
1 - Gt’I,U
u;@ (thcl) o Et/l’U >w;ﬁa
(A.6)

But this is just the Euler equation for the original model
which is solved by t] = t.. Remembering the ansatz made,
we now have for the stationary point f; = St.S t. Inserting
this into equation (A.3) gives G = S( t_é — Xy u) ST =
SGST which is the desired result.

Note that one has to ensure that the stationary point
for the transformed problem f; = St/ ST lies within the
space of one-particle parameters characteristic for the ref-
erence system. For models with local interaction part and
for local (and also global) gauge transformations, however,
this is always easily satisfied.

a(xt’l,U)W;aﬁ —0
ot o
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